Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 167320, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748613

RESUMO

The increased use of agrochemicals raises concerns about environmental, animal, and mainly human toxicology. The development of New Approach Methodologies (NAMs) for toxicological risk assessment including new in vitro tests and in silico protocols is encouraged. Although agrochemical mutagenicity testing is well established, a complementary alternative approach may contribute to increasing reliability, with the consequent reduction of false-positive results that lead to unnecessary use of animals in follow-up in vivo testing. Additionally, it is unreasonable to underestimate the phototoxic effects of an accidental dermal exposure to agrochemicals during agricultural work or domestic application in the absence of adequate personal protection equipment, especially in terms of photomutagenicity. In this scenario, we addressed the integration of in vitro and in silico techniques as NAMs to assess the mutagenic and phototoxic potential of agrochemicals. In the present study we used the yno1 S. cerevisiae strain as a biomodel for in vitro assessment of agrochemical mutagenicity, both in the absence and in the presence of simulated sunlight. In parallel, in silico predictions were performed using a combination of expert rule-based and statistical-based models to assess gene mutations and phototoxicity. None of the tested agrochemicals showed mutagenic potential in the two proposed approaches. The Gly and 2,4D herbicides were photomutagenic in the in vitro yeast test despite the negative in silico prediction of phototoxicity. Herein, we demonstrated a novel experimental approach combining both in silico and in vitro experiments to address the complementary investigation of the phototoxicity and (photo)mutagenicity of agrochemicals. These findings shed light on the importance of investigating and reconsidering the photosafety assessment of these products, using not only photocytotoxicity assays but also photomutagenicity assays, which should be encouraged.


Assuntos
Mutagênicos , Saccharomyces cerevisiae , Humanos , Animais , Agroquímicos/toxicidade , Reprodutibilidade dos Testes , Medição de Risco , Técnicas In Vitro
2.
An Acad Bras Cienc ; 94(suppl 3): e20211287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36197362

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are the latest class of drugs approved to treat type 2 DM (T2DM). Although adverse effects are often caused by a metabolite rather than the drug itself, only the safety assessment of disproportionate drug metabolites is usually performed, which is of particular concern for drugs of chronic use, such as SGLT2i. Bearing this in mind, in silico tools are efficient strategies to reveal the risk assessment of metabolites, being endorsed by many regulatory agencies. Thereby, the goal of this study was to apply in silico methods to provide the metabolites toxicity assessment of the SGLT2i. Toxicological assessment from SGLT2i metabolites retrieved from the literature was estimated using the structure and/or statistical-based alert implemented in DataWarrior and ADMET predictorTM softwares. The drugs and their metabolites displayed no mutagenic, tumorigenic or cardiotoxic risks. Still, M1-2 and M3-1 were recognized as potential hepatotoxic compounds and M1-2, M1-3, M3-1, M3-2, M3-3 and M4-3, were estimated to have very toxic LD50 values in rats. All SGLT2i and the metabolites M3-4, M4-1 and M4-2, were predicted to have reproductive toxicity. These results support the awareness that metabolites may be potential mediators of drug-induced toxicities of the therapeutic agents.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Medição de Risco , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/toxicidade
3.
Mini Rev Med Chem ; 20(10): 921-928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32178610

RESUMO

Tropical infectious diseases cause millions of deaths every year in developing countries, with about half of the world population living at risk. Mayaro virus (MAYV) is an emerging arbovirus that causes Mayaro fever, which is characterized by fever, headache, diarrhea, arthralgia, and rash. These symptoms can be clinically indistinguishable from other arboviruses, such as Dengue, Zika, and Chikungunya, which makes the diagnosis and treatment of the disease more difficult. Though, the Mayaro virus is a potential candidate to cause large-scale epidemics on the scale of ZIKV and CHIKV. Despite this, there is no licensed vaccine or antiviral for the treatment of Mayaro fever and most arboviruses, so the design and development of candidates for antiviral drugs are urgently needed. In this context, this mini-review aims to provide an overview of studies of anti-MAYV derivatives and highlight the importance of the discovery and development of promising drug candidates for Mayaro fever.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Alphavirus/efeitos dos fármacos , Alphavirus/fisiologia , Antivirais/farmacologia , Descoberta de Drogas , Antivirais/química , Antivirais/uso terapêutico , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-26827743

RESUMO

Snake venom toxins are related not only in detention, death and the promotion of initial digestion of prey but also due to their different biochemical, structural and pharmacological effects they can result in new drugs. Among these toxins snake venom serine proteases (SVSPs) should be highlighted because they are responsible for inducing changes in physiological functions such as blood coagulation, fibrinolysis, and platelet aggregation. This article presents the first serine protease (SP) isolated from Bothrops brazili: BbrzSP-32. The new SP showed 36 kDa of relative molecular mass and its absolute mass was confirmed by mass spectrometry as 32,520 Da. It presents 79.48% identity when compared to other SVSPs and was able to degrade the α-chain of fibrinogen, in in vitro models, because of this it is considered a SVTLE-A. It showed dose-dependent activity in the process of degradation of fibrin networks demonstrating greater specificity for this activity when compared to its thrombolytic action. BbrzSP-32 demonstrated proteolytic activity on gelatin and chromogenic substrates for serine proteases and thrombin-like enzymes (S-2288 and S-2238 respectively), besides having coagulant activity on human plasma. After pre-incubation with PMSF and benzamidine the coagulant and proteolytic activities on the S-2288 and S-2238 substrates were reduced. BbrzSP-32 shows stability against pH and temperature variations, demonstrating optimum activity between 30 and 40 °C and in the pH range 7.5 to 8.5. A new SP with potential biotechnological application was isolated.


Assuntos
Venenos de Crotalídeos/química , Serina Proteases/isolamento & purificação , Sequência de Aminoácidos , Animais , Bothrops , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Serina Proteases/química
5.
Biomed Res Int ; 2013: 294289, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710441

RESUMO

Snake venoms are complex mixtures of proteins of both enzymes and nonenzymes, which are responsible for producing several biological effects. Human envenomation by snake bites particularly those of the viperid family induces a complex pathophysiological picture characterized by spectacular changes in hemostasis and frequently hemorrhage is also seen. The present work reports the ability of six of a series of 1,2,3-triazole derivatives to inhibit some pharmacological effects caused by the venoms of Bothrops jararaca and Lachesis muta. In vitro assays showed that these compounds were impaired in a concentration-dependent manner, the fibrinogen or plasma clotting, hemolysis, and proteolysis produced by both venoms. Moreover, these compounds inhibited biological effects in vivo as well. Mice treated with these compounds were fully protected from hemorrhagic lesions caused by such venoms. But, only the B. jararaca edema-inducing activity was neutralized by the triazoles. So the inhibitory effect of triazoles derivatives against some in vitro and in vivo biological assays of snake venoms points to promising aspects that may indicate them as molecular models to improve the production of effective antivenom or to complement antivenom neutralization, especially the local pathological effects, which are partially neutralized by antivenoms.


Assuntos
Bothrops , Venenos de Serpentes/antagonistas & inibidores , Triazóis/administração & dosagem , Viperidae , Animais , Antivenenos/administração & dosagem , Antivenenos/química , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Camundongos , Mordeduras de Serpentes/tratamento farmacológico , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...